产品特点:

- ✓ 高功率密度
- ✓ 宽电压调节范围:80%~110%标 准输出电压
- ✓ 预偏置电压启动/输入过欠压保护/输出过流保护/输出过压保护/过温度保护
- ✓ 逻辑控制功能
- ✓ 塑壳封装,多种安装方式可选

Features:

- ✓ High power density
- ✓ Trim range:80%-110%
- ✓ High voltage type for optional
- ✓ Monotonic start-up into prebias load
- ✓ Input under / over voltage protection
- ✓ Output over-current protection
- ✓ Output over voltage protection

EFBS1500-500S 系列

产品规格书 PRODUCT SPECIFICATION

制造安全产品 驱动绿色世界 Power a Safe and Green world

EFBS1500-500S 系列全砖军用模块电源

华耀电子的EFBS系列是标准的全砖块尺寸(4.64" x 2.42" x 0.98", 117.8 x 62.0 x 25.0mm) 封装的高性能 DC - DC模块电源,此系列以宽的输入范围(400~650V)以及高效率,低高度,和高可靠性为主要特点,EFBS系列有着良好的热性能,适用于通信、新能源等众多的应用场合

目录

封朗l
输入电气性能2
输出电气性能3
机械尺寸5
命名规则6
订购信息6
公司联系方式6

保护/控制功能

- •预偏置电压启动
- •输入过/欠压保护
- •输出过流保护
- •输出短路保护
- •输出过压保护
- •过温度保护
- •开/关机控制
- •远端补偿
- •输出电压调整
- •输出并联均流

通用参数

- •输出电压精度: ±1.5%max
- •输出电压纹波: <1%Vout (典型值)
- •效率:94% 28V@54A, 500V 输入电压
- 94% 36V@42A, 500V 输入电压
- 94% 48V@31A, 500V 输入电压
- •工作温度: -55~100℃(基板温度)
- •电压调节范围: 80% to 110%标准输出电压
- •瞬态响应: 3Wout, 400uS (负载从 50% to 75%满载)
- •开关频率: 150KHz (典型值)

机械尺寸

- •标准尺寸: 117.8 x 62.0 x 25.0 mm
- •重量: 450g (塑壳封装)

安全与引用标准

- ·输入/输出隔离电压4250Vdc,隔离阻抗10MΩ
- •符合国军标降额设计标准
- •符合GJB360B/150/151/548标准

可选

- •通孔/螺纹孔
- •自恢复/锁死保护
- •正/负逻辑

最大限额

超过最大的限额应用可能会对模块带来永久性的损坏。另外,超过限额规定时间的应用也可能会对模块带来可靠性的隐患。工作状况下的模块应该参考电气性能部分。

参数	标志	最小	最大	单位
输入电压	V_{IN}	-0.3	700	Vdc
输入电压(100mS)	V_{IN}	-0.3	800	Vdc
输入与输出隔离电压		4250	-	Vdc
输入与基板隔离电压		3000		Vdc
输出与基板隔离电压		1000		Vdc
工作温度(参考热设计指标)	То	-55	100*	°C
存储温度	Tstg	-55	125	°C

*注:这里的工作温度指的是散热基板温度,对于温度超过100摄氏度的设计,请咨询华耀电子研发中心。

电气性能

电气性能规格如果没有特别指出,是指Vin=V_{Nom},常温25摄氏度下的性能指标。

● 输入规格

参数	标志	最小	典型	最大	单位
工作电压	V _{IN}	400	500	650	Vdc
最大输入电流(Vin=V _{Min} ,lo=I _{FL})	lin	-	-	4.4	Α
空载输入电流(Vin=V _{Norm})	I _{NL}	-	30	-	mA
待机工作电流	I _{Stdby}	-	5	10	mA
浪涌电流	l²t	-	-	0.05	A^2s
输入开启电压		360	365	370	Vdc
输入欠压关断电压		350	355	360	Vdc
输入欠压滞环		-	10	-	Vdc
输入过压关断电压		685	690	695	Vdc
输入过压恢复电压		675	680	685	Vdc
输入过压恢复滞环		-	10	-	Vdc
输入反射纹波电流(5 Hz to 20 MHz, 12 μH 源阻抗)		-	TBD	-	mA
输入纹波遏制 120 Hz		-	TBD	-	dB

^{*}注:此电源模块内部没有保险丝,但在使用时建议在输入端接入保险丝,避免内部损坏。

该电源模块可以在各种应用中使用,从简单的单机工作到复杂电源架构中的一个集成部分。为了保持最大的灵活性,没有使用内部保险丝,但是为了实现最大的安全性和系统保护,在输入侧要使用保险丝。此电源模块需要一个快速熔断型,最大电流10A的保险丝。

● 输出规格

输入电压	400-650Vdc
输出电压	28V
输出电流	54A
规格型号	EFBS1500-500S28

参数	标志	最小	典型	最大	単位
额定输出电压(Vi =V _{Min} to V _{Max} ; Io=I _{NL} ; 环境温度 = 25°C)	Vo	27.72	28.0	28.28	Vdc
输出电流	lo	0	-	54	Α
输出电压调整范围	Vo,adj	-20	-	+10	%Vo, set
输出远程检测范围	Vsense	-	-	+10	%Vo, set
输出电压调整率:					
输入电压调整率(Vin=V _{Min} to V _{Max})		-	0.05	0.25	%Vo, set
负载调整率(Io=I _{Min} to I _{Max})		-	0.05	0.25	%Vo, set
温度调整率 (温度=-55°C to +100°C)		-	-	2.5	%Vo, set
输出纹波与噪声(正常输出电压)					
(量测需要10uF陶瓷电容并联1uF陶瓷电容)					
(Vin=V _{Mix} to V _{Max} ,Io=80% I _{Max} ,20MHz 带宽)					
峰峰值(5Hz 到20MHz带宽)			280	-	Vpk-pk
有效值(5Hz 到20MHz带宽)			50	-	mVrms
输出外接电容	Co, max	0	-	100000	uF
输出过流点 (Vin=V _{Norm})	lo, lim	60	65	70	Α
输出过压保护	Vo, lim	32	35	38	Vdc
效率 (温度=25°C)					
Vin=V _{Norm1} , Io=I _{FL}	η	-	93.5	-	%
Vin=V _{Norm2} , Io=I _{FL}	η	-	94	-	%
动态响应					
(Vin=V _{Min} and V _{Max} ; 环温 = 25°C; 负载动态 0.1A/µs; 外部电容>100uF)					
负载从 50% to 75% 满载:					
峰峰值	Vpk		3.0		%Vo, set
恢复时间 (到10%输出电压动态值内)	Ts		400		μs
开机延时与输出电压上升延时(满载; 温度=25°C)					
1. Vin开机延时	Tdelay	-	150	250	msec
2. ON-OFF开机延时 (模块电压加入,模块遥控从OFF状态到ON状态,输出从0 到10%输出电压)	Tdelay	-	10	40	msec
3. 输出电压上升时间(输出电压从10% 到90%)	Trise		20	40	msec
输出电压启动过冲	Vo,limit	-	-	3	%Vo
过温保护点(打嗝模式,铝基板表面温度)	Tstg	-	100	-	°C
输出过流自恢复重启时间(OCP)	Trec	-	2.5	-	sec
输出过压自恢复重启时间(OVP)	Trec	-	2.5	-	sec

输入电压	400-650Vdc
输出电压	36V
输出电流	42A
规格型号	EFBS1500-500S36

参数	标志	最小	典型	最大	单位
额定输出电压(Vi =V _{Min} to V _{Max} ; Io=I _{NL} ; 环境温度 = 25°C)	Vo	35.46	36.00	36.54	Vdc
输出电流	lo	0	-	42	Α
输出电压调整范围	Vo,adj	-20	-	+10	%Vo, set
输出远程检测范围	Vsense	-	-	+10	%Vo, set
输出电压调整率:					
输入电压调整率(Vin=V _{Min} to V _{Max})		-	0.05	0.25	%Vo, set
负载调整率(Io=I _{Min} to I _{Max})		-	0.05	0.25	%Vo, set
温度调整率 (温度=-55°C to +100°C)		-	-	2.5	%Vo, set
输出纹波与噪声(正常输出电压)					
(量测需要10uF陶瓷电容并联1uF陶瓷电容)					
(Vin=V _{Mix} to V _{Max} ,Io=80% I _{Max} ,20MHz 带宽)					
峰峰值(5Hz 到20MHz带宽)			360	-	Vpk-pk
有效值(5Hz 到20MHz带宽)			100	-	mVrms
输出外接电容	Co, max	0	-	100000	uF
输出过流点 (Vin=V _{Norm})	lo, lim	50	52	55	Α
输出过压保护	Vo, lim	45	47	50	Vdc
效率 (温度=25°C)					
Vin=V _{Norm1} , Io=I _{FL}	η	-	93.5	-	%
Vin=V _{Norm2} , Io=I _{FL}	η	-	94	-	%
动态响应					
(Vin=V _{Min} and V _{Max} ; 环温 = 25°C; 负载动态 0.1A/μs; 外部电容>100uF)					
负载从 50% to 75% 满载:					
峰峰值	Vpk		3.0		%Vo, set
恢复时间 (到10%输出电压动态值内)	Ts		400		μs
开机延时与输出电压上升延时(满载; 温度=25°C)					
4. Vin开机延时	Tdelay	-	150	250	msec
5. ON-OFF开机延时 (模块电压加入,模块遥控从OFF状态到ON状态,输出从0 到10%输出电压)	Tdelay	-	10	40	msec
6. 输出电压上升时间(输出电压从10% 到90%)	Trise		20	40	msec
输出电压启动过冲	Vo,limit	-	-	3	%Vo
过温保护点(打嗝模式,铝基板表面温度)	Tstg	-	100	-	°C
输出过流自恢复重启时间(OCP)	Trec	-	2.5	-	sec
输出过压自恢复重启时间(OVP)	Trec	-	2.5	-	sec

输入电压	400-650Vdc
输出电压	48V
输出电流	31A
抑枚刑县	FFRS1500-500S48

参数	标志	最小	典型	最大	单位
额定输出电压(Vi =V _{Min} to V _{Max} ; Io=I _{NL} ; 环境温度 = 25°C)	Vo	47.28	48.00	48.72	Vdc
输出电流	lo	0	-	31	Α
输出电压调整范围	Vo,adj	-20	-	+10	%Vo, set
输出远程检测范围	Vsense	-	-	+10	%Vo, set
输出电压调整率:					
输入电压调整率(Vin=V _{Min} to V _{Max})		-	0.05	0.25	%Vo, set
负载调整率(Io=I _{Min} to I _{Max})		-	0.05	0.25	%Vo, set
温度调整率 (温度=-55°C to +100°C)		-	-	2.5	%Vo, set
输出纹波与噪声(正常输出电压)					
(量测需要10uF陶瓷电容并联1uF陶瓷电容) (Vin=V _{Mix} to V _{Max} ,Io=80% I _{Max} ,20MHz 带宽)					
峰峰值(5Hz 到20MHz带宽)			480	-	Vpk-pk
有效值(5Hz 到20MHz带宽)			100	-	mVrms
输出外接电容	Co, max	0	-	100000	uF
输出过流点 (Vin=V _{Norm})	lo, lim	38	40	42	Α
输出过压保护	Vo, lim	55	60	65	Vdc
效率 (温度=25°C)					
Vin=V _{Norm1} , Io=I _{FL}	η	-	93.5	-	%
Vin=V _{Norm2} , Io=I _{FL}	η	-	94	-	%
动态响应					
(Vin=V _{Min} and V _{Max} ; 环温 = 25°C; 负载动态 0.1A/μs; 外部电容>100uF)					
负载从 50% to 75% 满载:					
峰峰值	Vpk		3.0		%Vo, set
恢复时间 (到10%输出电压动态值内)	Ts		400		μs
开机延时与输出电压上升延时(满载; 温度=25°C)					
7. Vin开机延时	Tdelay	-	150	250	msec
8. ON-OFF开机延时 (模块电压加入,模块遥控从OFF状态到ON状态,输出从0 到10%输出电压)	Tdelay	-	10	40	msec
9. 输出电压上升时间(输出电压从10% 到90%)	Trise		20	40	msec
输出电压启动过冲	Vo,limit	-	-	3	%Vo
过温保护点(打嗝模式,铝基板表面温度)	Tstg	-	100	-	°C
输出过流自恢复重启时间(OCP)	Trec	-	2.5	-	sec
输出过压自恢复重启时间(OVP)	Trec	-	2.5	-	sec

- 注: 1. 测量模块输入加一低ESR的电解电容(C1),推荐使用100uF。注意低温下此容可能会失效,如需要低温 (<-30度) 使用,建议并联采用4.7uF陶瓷电容。
 - 2. 测试纹波时,输出加 10uF 1210 (C2) 和1uF 0805 (C3) 陶瓷电容,距离模块出端20-40mm,且测试点应在电C3两端。
 - 3. 过温保护点的温度是指模块电源铝基板表面温度。

● 遥控特性规格

,_,,	-// = I H					
	参数	标志	最小	典型	最大	单位
负逻辑:						
	逻辑低 – 模块开启					
	逻辑高 – 模块关闭					
正逻辑:						
	逻辑高 – 模块开启					
	逻辑低 - 模块关闭					
逻辑低:	On/off电流(Von/off = -0.7Vdc)	lon/off	-		0.15	mA
	On/off电压	Von/off	-0.7		8.0	Vdc
逻辑高:	On/off电压(Ion/off = 0.0A)	Von/off	2.4		7	Vdc
	On/off最大允许漏电流	ION/OFF	-		25	μA
隔离阻抗		Riso	10	-	-	ΜΩ
隔离电容		Ciso		1000		pF
计算MTBF		MTBF		3.6		10 ⁶ – hour

● 模块运行示意图

图1, 模块运行需要输入电容, 建议接入保险丝

机械尺寸

全砖1500w塑壳式

单位: 毫米(mm);

误差: .X=±0.25, .XX=±0.10; 引脚: ±0.25

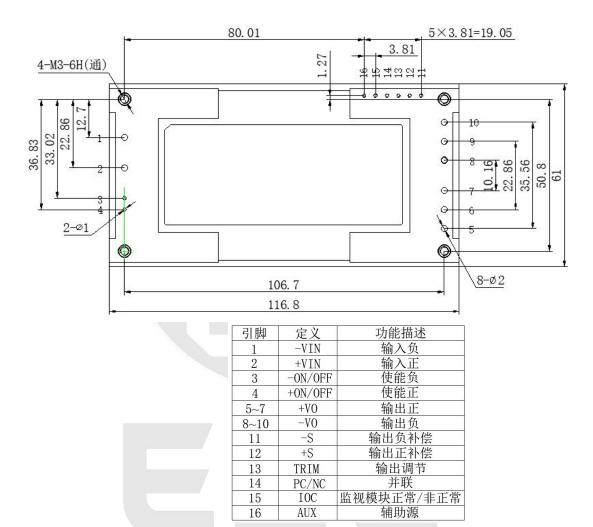


图2:产品外观示意图

注意事项:

1) 单位: mm

公差: .xx ± .25 (.xxx ± 0.010)

2) 输入/出小Pin为1.00mm (0.040"), 输入/出大Pin为 2.00 mm (0.079")

命名规则

3) 引脚材质:铜合金

标准砖模块电源系列按照下述方法对电源进行型号命名:

	<u> </u>	<u> </u>	$\square \square \square 2$	ШШ	\Box	ш	Ш	Ш
1) (2		3	4	(5)	6 7	8	9	10
1 -	一表示	卡合肥华	耀电子工业	业有限	艮公司 (简称		
"ECU	")							
② 模	块类型	텔						
E	DC	上水人	7++++++ ++ ×	百石石	d			

FBS——标准全砖模块电源系列

HBS---标准 1/2 砖模块电源系列

QBS——标准 1/4 砖模块电源系列

EBS——标准 1/8 砖模块电源系列

VBS——标准 1/16 砖模块电源系列

③ 输出功率

1500: 1500W

④ 额定输入电压,后缀加 S 表示单路输出,D 表示多路输出

500: 额定 500V 输入

⑤ 输出电压

28: 28V 输出

⑥ 表示开关机逻辑控制

P ——表示正逻辑

N ——表示负逻辑

⑦ 表示模块的工作温度等级。用1位字母表示,其表示如下:

 $H --- -40^{\circ}C \sim +85^{\circ}C;$

T —— -40°C ~+100°C;

M —— -55°C∼+100°C;

⑧ 表示外壳类型

A ——开板式;

B ——塑壳式;

C ——金属外壳式;

⑨表示安装方式

0 ——表示无孔;

1 ——表示通孔;

2 ——表示螺纹孔;

⑩表示输入电压范围类型

₩ ——表示 4:1 宽范围输入电压;

L ——表示 2:1 范围输入电压;

注: 具有并联功能模块

(P) ——表示具有并联功能

如果需要特殊型号而列表中没有的,您可以和我们联系。

P/N	Vin	Vo	lo
EFBS1500-160S100	110-200V	100V	15A
EFBS1400-160S28	110-200V	28V	50A
EFBS1000-080S24	60-90V	24V	42A
EFBS1500-300S28	200-400V	28V	54A
EFBS1500-300S36	200-400V	36V	42A
EFBS1500-300S48	200-400V	48V	31A
EFBS1500-500S28	400-650V	28V	54A
EFBS1500-500S36	400-650V	36V	42A
EFBS1500-500S48	400-650V	48V	31A

我们的产品一直保持更新,您可以联系我们获得更多的信息或者直接订购:

电话: 4006659997

产品咨询: 0551-62731111

传真: 0551-68124419

邮编: 230000

邮箱: sales@ecu.com.cn

网站: www.ecu.com.cn

地址:安徽省合肥市淠河路88号101大楼

<u>订购须知</u>

下表列出了全砖1500W系列的所有产品型号,当您订购产品下单时,请仔细核对命名规则中的数字和字母代码,

